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Control of a Remotely Operated Quadrotor Aerial Vehicle and
Camera Unit Using a Fly-The-Camera Perspective

DongBin Lee1, Vilas Chitrakaran2, Timothy Burg1, Darren Dawson1, and Bin Xian3

Abstract–This paper presents a mission-centric approach
to controlling the optical axis of a video camera mounted
on a camera manipulator and fixed to a quadrotor remotely
operated vehicle. The approach considers that for video
collection tasks a single operator should be able to operate
the systems by ”flying-the-camera”; that is, collect video
from the perspective that the operator is looking out of and
is the pilot of the camera. This will allow the control of
the quadrotor and the camera positioner to be fused into a
single control problem where the camera is positioned using
the four degree-of-freedom (DOF) quadrotor and the two
DOF camera positioner to provide a full six DOF actuation
of the camera view. The closed-loop controller is designed
based on a Lyapunov-type analysis and is shown to produce
Globally Uniformly Ultimately Bounded (GUUB) tracking of
a desired trajectory. Computer simulation results are provided
to demonstrate the performance of the suggested controller.

I. Introduction

The potential for unmanned aerial vehicles (UAVs)
in applications as diverse as fire fighting, emergency
response, military and civilian surveillance, crop mon-
itoring, and geographical registration has been well
established. Many research groups have provided con-
vincing demonstrations of the utility of UAVs in these
applications. However, there is still a large chasm be-
tween the anticipated “tool of the future” and currently
available systems. The commercial and military use of
UAVs is predicated on the ability of such vehicles to
perform new, safer, or more cost effective tasks than
traditional manned aircraft. Until recently, this has been
more of a question than a statement; however, recent
advances in aerial vehicle construction, sensors, digital
electronics, control design have seen a rapid increase in
UAV applications.
Aerial vehicle construction should be considered as an

important factor in UAV applications. Improved man-
ufacturing techniques are capable of producing small,
complex, precise parts at a reasonable price and new
battery technologies have made electric hovering craft
more feasible. One of the interesting small aerial vehicles
that seems to have benefited from these developments
is the quadrotor helicopter depicted in Figure 2. The
quad-rotor consists of four independently driven rotating
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blades that can provide lift in the vertical direction. The
vehicle moves in other directions by creating a mismatch
between rotor speeds, and hence, this configuration can
produce torques about the roll, pitch, and yaw axes.
The basic concept for the quad-rotor dates back to 1907;
some notes on the history of the quad-rotor and related
references can be found in [9]. With this as a backdrop,
the focus of the work presented here will be the small
quad-rotor family of aerial vehicles. The discussion will
be limited to vehicles with less than 0.5kg payload. This
weight restriction means that certain technologies that
may make sense for larger, more expensive aircraft may
not apply to this class of aircraft.
The typical scenario for using the quadrotor helicopter

(or any aerial vehicle) as a video camera platform is based
on mounting the camera on a positioner that is controlled
independently from the vehicle. When the navigation or
surveillance tasks become complicated, two people may
be required to achieve the camera targeting objective: a
pilot to navigate the UAV and a camera operator. It is
insightful to consider the actions of these two actors in
this scenario in order to hypothesize a new operational
mode. The pilot will work to position the aircraft to
avoid obstacles and to put the camera platform, i.e.,
the aerial vehicle, in a position that the will allow the
camera operator to watch the camera feed and move
the camera positioner to track a target or survey an
area. An important underlying action on the part of the
camera operator that makes this scenario feasible is that
the camera operator must compensate for the motions of
the UAV that disturb the camera targeting as illustrated
in Figure 1. Additionally, there must be communication
between the pilot and the operator so that the camera
platform is correctly positioned or moved to meet the
video acquisition objective. More specifically, the camera
positioning problem is split between the pilot and the
camera operator. Since the operator is not in full control
of positioning the camera, she must rely on commands
to the pilot to provide movement of the camera platform
for motions not included in the camera positioner. For
example, if the camera positioner is a simple pan-tilt and
the camera operator requires translation of the camera
then a request must be made to the pilot to move the
camera platform. The potential shortcomings of this
typical operational scenario can be summarized as: i)
multiple skilled technicians are typically required, ii) the
camera operator must compensate for the actions of the
pilot, and iii) it is not intuitive for a camera operator
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Fig. 1. Diagrams a - c illustrate the effect of uncompensated cam-
era platform motion on the camera axis. Diagrams d - f illustrate
a scenario where the camera positioner is used to compenste for
the platform motion and maintain the camera view.

to split the camera targeting tasks between actions of
the camera positioner controlled by the operator and
commands to the pilot.
The problem of providing an intuitive interface with

which an operator can move a camera positioner to make
a video camera follow a target image appears in many
places. The difficulty of moving a system that follows
a subject with a video camera was recently addressed
in [13] where operating a multilink, redundant-joint
camera boom for the movie and television industry is
described. The interesting result from this work is that
an integrated control strategy, using a vision servoing
approach to reduce the number of links controlled by
the operator, can improve the use of the system. The
final result shows an unexperienced operator achieving
the same tracking result as an experienced operator;
hence, the control strategy has rendered the system more
friendly to the operator. The salient point of the control
strategy is that there is independent macro- and micro-
positioning of the camera - the operator controls the
course positioning and the vision system controls the fine
positioning. The authors suggest that the same approach
could be used for other camera platforms; however, it
is required that the system have redundant positioning
axes. Additionally, an automated vision servoing system
may not be desirable for general reconnaissance where
the target is not known.
A different perspective to this same basic camera

targeting problem was presented in [1] and [10] where
the camera platform, a quadrotor UAV, and the camera
positioning unit are considered to be a single robotic
unit. In this work a controller was developed which simul-
taneously controls both the quadrotor and the camera
positioning unit in a complimentary fashion. Both works
show combining the four degrees-of-freedom provided by

motion of the quadrotor helicopter with two degrees-
of-freedom provided by a camera positioner to provide
arbitrary six degree-of-freedom positioning of the on-
board video camera. The work in [1] is actually directed
towards providing an automated means of landing the
quadrotor through the vision system but provides an
important mathematical framework for the analyzing the
combined quadrotor/camera system. The work in [10]
builds on [1] to show the design of a velocity controller for
the combined quadotor/camera system that works from
operator commands generated in the camera field-of-view
to move both elements. This perspective, which will be
referred to as the fly-the-camera perspective, presents a
new interface to the pilot. In this proposed approach,
the pilot commands motion from the perspective of the
on-board camera - it is as though the pilot is riding
on the tip of the camera and commanding movement of
the camera ala a six-DOF flying camera. This is subtly
different from the traditional remote control approach
wherein the pilot processes the camera view and then
commands an aircraft motion to create a desired motion
of the camera view. The work proposed here exploits this
new perspective for fusing vehicle and camera control.
In this paper, a quadrotor UAV model will be combined
with a two-DOF camera kinematic model to create a
fully actuated camera frame and a positioner controller
will be designed.
The paper is organized as follows. In Section II, a

well known kinematic and dynamic model of the quad-
rotor is presented. The dynamic model is simplified to
include only the translational dynamics of the quadrotor.
Assumptions and properties of this model are shown.
The kinematics for a three-link camera positioner are
developed as a means of studying two special cases that
require different two-link positioner configurations: when
the camera is looking forward and when the camera is
looking downward. The case of the camera looking for-
ward is carried through the control design and simulation
while the second case, the camera looking downward, is
a simple modification of the first. A Lyapunov function
based control design approach is detailed in Section
III, its stability analysis is shown in Section IV, and
a simulation demonstrating the controller is presented
in Section V.

II. System Modeling

A. Underactuated Quadrotor Aerial Vehicle Model

The elements of the quad-rotor unmanned aerial ve-
hicle model are shown in Figure 2 and Figure 3. The
quadrotor is assumed to be a rigid body on which thrust
and torque act uniformly through the body and that the
quadrotor body fixed frame, F, is chosen to coincide with
the center of gravity which implies that it has a diagonal
inertia matrix. The kinematic and a dynamic model of
a quadrotor expressed in the body-fixed reference frame



are as follows [4],[1]

ṗIIF = RIF (Θ) v
F
IF , (1)

Θ̇IIF = T IF (Θ)ω
F
IF , (2)

ṘIF = RIFS ωFIF , (3)

mv̇FIF = FFf −mS(ωFIF )vFIF +N1(vFIF ) +G(RFI ).(4)
In this model vFIF (t) = [vx, vy, vz] ∈ R3 denotes the
linear velocity of the quadrotor body-fixed frame with
respect to the earth-fixed inertial frame, I, expressed in
the body-fixed frame, F , and ωFIF (t) = [ωx,ωy,ωz] ∈ R3
denotes the angular velocity of the quadrotor body-fixed
frame with respect to the inertial frame, I, expressed in
the body-fixed frame, F . Equations (1) - (3) represent
the kinematics of the quad rotor and include the approx-
imation that the rotational dynamics are negligible. The
time derivative of position, ṗIIF (t) in (1), is the velocity
of the quadrotor. In a similar manner, the angular
derivative Θ̇IIF (t) in (2) represents the angular velocity
ωFIF (t) transformed by the matrix T

I
F (Θ). Equation (2)

represents the modeling assumption that angular velocity
of the quadrotor is calculated directly in lieu of modeling
the angular dynamics; that is, ωFIF (t) is considered as the
system input. The dynamics of the translational velocity
is shown in (4) and contains the gravitational term,
G(RIF ), which is represented in the body-fixed frame as

G(RIF ) = mg(R
I
F ) E3 ∈ R3 (5)

where g ∈ R1 denotes gravitational acceleration, E3 =
[0, 0, 1] denotes the unit vector in the coordinates of
the inertial frame, m ∈ R1 is the known mass of
the quad-rotor, N1 vIIF ∈ R3 represents a bounded,
unknown, nonlinear function (i.e, aerodynamic damping)
and S(·) ∈ R3x3 is a general form of the skew-symmetric
matrix as follows

S(ξ) =

⎡⎣ 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

⎤⎦ , ξ = [ξ1, ξ2, ξ3]T ∈ R3.
(6)

The quadrotor has inherently six degrees-of-freedom as
shown in Figure 2: three translations in the x, y, and z
directions and three rotations about the roll (φ), pitch
(θ), and yaw (ψ) axes. However, the quadrotor has only
four control inputs: one translational force along the z-
axis and three angular velocities. The vector FFf (t) ∈ R3
refers to the quadrotor translational forces expressed in
the quadrotor frame but in reality represents the single
translational force which is created by summing the
forces generated by the four rotors and is expressed as

FFf = B1u1 = 0 0 u1 (7)

where u1(t) ∈ R1.
B. Camera Positioner Kinematics

To create a general analytic framework for modeling
various mounting configurations of a two-link revolute
positioner a 3-link robot manipulator model is proposed.
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Fig. 2. An underactuated quadrotor vehicle

The camera positioner will be used to augment the
camera position with two additional degrees-of-freedom
(compared to a camera fixed directly to the quadrotor
frame). This general three-axis camera positioner will
provide for a Tilt-Pan-Roll motion and the variables
θtilt(t), θpan(t), and θroll(t) will be used to represent the
Tilt, Pan, and Roll angles, respectively. The Tilt-Pan-
Roll motion can be reduced to two special operational
cases of Tilt-Roll and Pan-Tilt by freezing (holding
constant) one of the joints as shown in Figure 3. The
Tilt-Roll configuration can be used to compensate for
the quadrotor body roll and pitch when the camera is
facing forward for tasks such as general navigation or
surveillance. In the Pan-Tilt mode, the camera positioner
is also used to compensate for quadrotor body roll and
pitch while the camera is facing downward for landing
or surveillance tasks. For both of these configurations,
the camera optical frame, which is actuated by the
combination of the quadrotor and the camera positioner,
is fully actuated. The dynamics of the camera unit will be
considered negligible and that the angles of the camera
positioner can be commanded directly without error.
In order to facilitate the development of the rotation

matrices for the manipulator in Figure 3, standard
coordinate system definitions are made. Specifically, O0 is
used to represent the origin of a coordinate system at
the base of the camera and coincident with camera
positioner base coordinate system B and O3 is the origin
of a coordinate system attached at the third link and
coincident with camera frame denoted C. Note that this
matrix, RFB(θC) represents a static mounting on the
quadrotor and is given by

RFB =

⎡⎣ 1 0 0
0 0 1
0 −1 0

⎤⎦ . (8)

The camera positioner unit is considered to have coin-
cident rotational links, thus the link lengths are zero
(a = 0 in Table I).
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Fig. 3. Quadrotor with a Pan-Tilt-Roll camera positioner.

1) Case 1: Tilt-Roll Camera Configuration (camera
looking forward): The Denavit-Hartenburg table for the
Tilt-Roll configuration in Figure 3 is shown in Table I.
The Tilt-Roll camera positioner is obtained by freezing
the second manipulator joint. The link rotation matrices
can be obtained using standard results [12] and setting
θp(t) = 0 yields the modified result

R12 =

⎡⎣ 0 0 1
−1 0 0
0 −1 0

⎤⎦ (θp = 0◦). (9)

The total rotation matrix from the quadrotor through
the 3rd link can be obtained as

RFC = RFBR
B=O0
1 R12R

2
3=C (10)

=

⎡⎣ − sin θt cos θr sin θt sin θr cos θt
sin θr cos θr 0

− cos θt cos θr cos θt sin θr − sin θt

⎤⎦ .
Link d (offset) a (length) αt (twist) θa (angle)
1 0 0 −90◦ θt
2 0 0 −90◦ θp − 90◦
3 0 0 0◦ θr − 90◦

TABLE I

Denavit-Hartenburg Table for a Tilt-Roll Camera Positioner

The angular velocity of the camera frame can be
written as follows

ωFBC = R
F
Bω

B
BC = R

F
BJ θ̇C = JC θ̇C (11)

where the positioner joint angles, θ̇C(t) ∈ R3, are given
by

θ̇C =

⎡⎣ θ̇t
θ̇p
θ̇r

⎤⎦ and θC =

⎡⎣ θt
θp
θr

⎤⎦ in which θp(t) = 0
◦.

(12)
The Jacobian matrix JC(θC) ∈ R3×3 in (11) can be built
from the rotation matrices with the final result given by

JC = R
F
B z0 z1 z2 =

⎡⎣ 0 − sin θt cos θt
1 0 0
0 − cos θt − sin θt

⎤⎦
(13)

where zi are the columns of the rotation matrices as
specified in [12]. By way of example, the third column
in (8) is the z0 vector in JC(θC). To simplify the use
of the Jacobian matrix in later developments, it can be
noted that θ̇p(t) = 0 (since it assumed to be constant)
and hence a new reduced position joint angle vector can
be introduced as

θ̇C =
θ̇t
θ̇r

∈ R2 and θC =
θt
θr

∈ R2 (14)

along with a reduced Jacobian matrix, JC(θC) ∈ R3×2,
defined as

JC = R
F
B z0 z2 =

⎡⎣ 0 cos θt
1 0
0 − sin θt

⎤⎦ . (15)

The total rotation matrix from the camera frame to
the inertial frame can be obtained using the previous
equations as

RIC = R
I
FR

F
C (16)

and the desired rotation matrix expressed in inertial
frame, RICd(Θ, θC), can be defined in the following
manner

RICd = R
I
FR

F
CR

C
Cd. (17)

Hence, the rotation matrix between the camera frame
and the desired frame can be obtained using measurable
rotations as

RCCd = RIC RICd

= RCFR
F
I RIFR

F
CR

C
Cd. (18)

Remark 1: The more details are shown in Appendix
B and a similar approach can be followed to develop the
kinematics for the Pan-Tilt configuration.

C. Translation and Orientation of the Camera Frame

The objective is to control the motion of the camera
optical axis. Towards this end, the kinematic relation-
ships in (1) - (3) will be extended to include the action
of the camera positioning unit and to obtain the position
and orientation of the camera. The derivative of the
position of the camera in the camera frame, C, with



respect to the inertial frame, I, and expressed in the
inertial frame, ṗIIC (t) ∈ R3, is defined as

ṗIIC = R
I
Cv

C
IC (19)

where vCIC(t) ∈ R3 is the linear velocity in the camera
frame, C, referred to inertial frame, I, and expressed in
the camera frame, C. The velocity vCIC(t) can be divided
into two components as follows

RICv
C
IC = RIC vCIF + v

C
FC

= RIC RCF v
F
IF +R

C
F v

F
FC

= RIF v
F
IF (20)

where the fact that vFFC(t) = 0 is used, since the camera
positioning unit only has rotational axes and does not
translate from the quadrotor body. The desired camera
position trajectory, ṗIICd(t) ∈ R3, is generated via

ṗIICd = R
I
Cv

C
ICd (21)

where vCICd(t) ∈ R3 is a desired input velocity vector.
The second equation of (2) uses a Jacobian matrix

T IF (Θ) to relate the rotational velocity in the quadrotor
frame to the rotational velocity in the inertial frame.
This relationship can be used to solve for ΘIIF (t) as

ΘIIF =
t

0

T IF (Θ)ω
F
IF dt (22)

where ΘIIF (t) = φ θ ψ ∈ R3 represents the roll,
pitch, and yaw angles between the quadrotor frame and
inertial frame as described in [4]. The exact form of
T IF (Θ) can be expressed as follows

T IF (Θ) =

⎡⎣ 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

⎤⎦ . (23)

A similar result is now shown for the camera angle,
ΘIIC(t). The Jacobian matrix T

I
F (Θ) is used to relate

the rotational velocity of the camera in the quadrotor
frame to the rotational velocity in the inertial frame as

Θ̇IIC = T IF (Θ)ω
F
IC

= T IF (Θ) R
F
Cω

C
IC (24)

and decomposing the angular velocity, ωCIC(t), yields

Θ̇IIC = T IF (Θ)R
F
C ωCIF + ωCFC

= T IF (Θ)R
F
C ωCIF + (ω

C
FB + ωCBC)

= T IF (Θ)R
F
C RCFω

F
IF +R

C
Fω

F
FB +R

C
Fω

F
BC

= T IF (Θ) ωFIF +R
F
Bω

B
BC

= T IF (Θ)ω
F
IF + T

I
F (Θ)R

F
BJ θ̇c (25)

where RFCR
C
F = 1 and ωFFB(t) = 0 since the camera base

is rigidly mounted on the quadrotor frame. The definition
JC = R

F
BJ(t) is introduced into (25) to yield

Θ̇IIC = T
I
F (Θ)ω

F
IF + T

I
F (Θ)JC θ̇c (26)

where JC θ̇c(t) was defined in (15) as the camera kine-
matics. Finally, following the same approach the desired

camera angle, ΘIICd(t), is obtained from the desired
angular velocity of the camera in the quadrotor frame,
ωCICd(t), as

Θ̇IICd = T IF (Θ)ω
F
ICd

= T IF (Θ)R
F
Cω

C
ICd. (27)

The changing rate of RIC(Θ),i.e., Ṙ
I
C(Θ), is obtained

as follows
ṘIC = R

I
CS(ω

C
IC) (28)

thus

ṘCI = RICS(ω
C
IC)

= S (ωCIC)R
C
I

= −S(ωCIC)RCI . (29)

D. Model Assumptions

The following assumptions are made regarding the
system model:
A1: The position pIIF (t) and velocities vFIF (t),

ωFIF (t) are measurable and the angles of the
quadrotor and Pan-Tilt-Roll camera unit are
also measurable.

A2: The quadrotor frame expressed in F , camera
base expressed in B, and camera frame C are
all coincident since the link lengths and link
offsets are assumed to have zero length..

A3: RIF (Θ) and T
I
F (Θ) are full rank, i.e., θ(t) = ±π

2
so that [4]. This will ensure that the orientation
angle, α(t), (defined later) remains within the
range 0 ≤ α(t) < 2π about the rotation axis
µ(t) and will ensure that det(Lω) exists.

A4: The desired camera trajectories and the first
derivatives are all bounded; i.e., pIICd(t),
vCICd (t) , and ωCICd (t) ∈ L∞.

A5: N1(v
F
IF ) in (4) can be replaced by the lin-

early parameterized form Y1(v
F
IF )θ1 = N1(v

F
IF )

where Y1(vFIF ) ∈ R3xn is a known regression
matrix and θ1 ∈ Rn is a known parameter
vector. Additionally, Y1(v

F
IF )θ1 ≤ ζ1( v

F
IF )

≤ ξ1 vFIF where ζ1 is a positive function
and non-decreasing in vFIF and ξ1 ∈ R1 is
a positive constant.

III. Control Method

Figure 4 demonstrates the culmination of the modeling
effort to combine the quadrotor and camera positioner
to create a means of fully actuating the camera optical
axis. In this diagram, it can be seen that the camera is
positioned and oriented by using the two camera posi-
tioner angles (selected from θtilt(t), θroll(t), and θpan(t)
according to configuration), the quadrotor linear force,
F (t), and the quadrotor angles φroll(t), θpitch(t), and
ψyaw(t) by ωx(t),ωy(t), and ωz(t) from (2). In keeping
with the fly-the-camera objective, a controller will be
designed based on these inputs to move the camera
optical axis along a desired trajectory. A control strategy
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Fig. 4. The Camera Optical Axis is fully actuated by two camera
positioner angles, a linear force, and the three angular velocities.

will be proposed to control the camera translational
position error, ep(t) ∈ R3, and the camera orientation
error, e

θ(t) ∈ R3.
A. Open-Loop Error Formulation

The camera translational position error, ep(t), is
defined in the camera frame (C) as the transformed
difference between the inertial frame (I) based camera
position, pIIC(t), and the inertial frame based desired
camera position, denoted as pIICd(t) ∈ R3, as follows

ep RCI (p
I
IC − pIICd). (30)

The camera translational position error rate, ėp (t) ∈ R3,
is obtained by taking the time derivative of (30) to yield

ėp = Ṙ
C
I (p

I
IC − pIICd) +RCI (ṗIIC − ṗIICd) (31)

where ṗIIC(t) and ṗ
I
ICd(t) were introduced in (19) and

(21), respectively. Substituting (29) into the first term
in (31) yields

ṘCI (p
I
IC − pIICd) = −S(ωCIC)RCI (pIIC − pIICd)

= −S(ωCIC)ep. (32)

and the term RCI ṗ
I
IC(t) in (31) can be rewritten in terms

of the quadrotor velocity, vFIF (t), as

RCI ṗ
I
IC = RCI (R

I
Cv

C
IC)

= vCIC
= vCIF + v

C
FC

= RCF v
F
IF (33)

with vCFC = 0, i.e., all translation of the camera is the
result of the quadrotor translation. The final term in
(31) is rewritten as

RCI ṗ
I
ICd = RCI (R

I
Cv

C
ICd)

= vCICd. (34)

Substituting (32), (33), and (34) into (31) yields

ėp = −S(ωCIC)ep + RCF v
F
IF − vCICd. (35)

To further the controller development, a filtered error,
r(t) ∈ R3, is introduced as

r =
rp
e
θ

(36)

where the filtered position error, rp(t) ∈ R3, is defined
as

rp = kpep +R
C
F v

F
IF +R

C
F δ (37)

in which δ = [ 0 0 δ3 ] ∈ R3 is a constant design
vector. The orientation tracking error signal, eθ(t) ∈ R3,
is defined in terms of the angle-axis representation of the
rotation matrix between the desired and actual camera
orientations, RCCd(t), [1] as

e
θ
= αµ (38)

where the scalar angle α(Θ) is obtained from

α = cos−1
1

2
(Tr(RCCd)− 1) ∈ R1, (39)

in which Tr(RCCd) defines the trace of the matrix R
C
Cd(Θ),

and the unit length axis of rotation µ(Θ) ∈ R3 defined
as

µ =
1

2 sinα

⎡⎣ (r32 − r23)
(r13 − r31)
(r21 − r12)

⎤⎦ (40)

for which µ 2 = 1. In this representation, the rotation
angle α(Θ) is assumed to stay within the range 0 ≤
α(Θ) < 2π. Note that the terms on the right-hand side
of the definition in (40) come from RCCd(Θ) as

RCCd =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ . (41)

Substituting the axis-angle representation from (39) and
(40) into (38) yields

e
θ
=

1

2 sinc{cos−1(12(Tr(RCCd)− 1))}

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦
(42)

where sinc(α) =
sin(α)

α
.

The angular error rate can be obtained by taking the
time derivative of (38) as

ė
θ
= Lωω

C
CCd ∈ R3 (43)

where

Lω = I3 − α

2
S(µ) + 1− sinc(α)

sinc2(α2 )
S2(µ) (44)

in which S(µ) is a skew symmetric matrix defined as

S(µ) =
(RCCd − (RCCd) )

2 sinα
. (45)

Details for obtaining of (43) - (45) can be found in [8] and
[5]. The term ωCCCd(t) ∈ R3 introduced in (43) represents



the angular velocity of the desired camera frame relative
to the actual camera frame as
ωCCCd = ωCCI + ωCICd = −ωCIC + ωCICd = −RCFωFIC + ωCICd

= −RCF (ωFIF + ωFFB + ωFBC) + ωCICd
= ωCICd −RCF (ωFIF + ωFBC).

(46)
where the rigid connection of the manipulator to the
base requires ωFFB(t) = 0. Substituting (46) along with
(11), (14), and (15) into (43) produces

ėθ = Lω ωCICd −RCFωFIF −RCFωFBC)
= Lωω

C
ICd − LωRCFωFIF − LωRCF Jcθ̇c. (47)

Taking the time derivative of rp(t) in (37) yields

ṙp = R
C
F v̇

F
IF + Ṙ

C
F v

F
IF + kpėp + Ṙ

C
F δ. (48)

Substituting from (4) and (35) into (48), utilizing the
fact that ṘCF (Θ) = RCFS(ω

F
CF ) = −RCFS(ωFFC) , and

subtracting and adding RCFS(ω
F
IF )δ yields

ṙp = RCF
1
mN1(v

F
IF )− S(ωFIF )vFIF + gRFI E3 + 1

mF
F
f

+kp R
C
F v

F
IF − S(ωCIC)ep − vCICd +RCFS(ω

F
IF )δ

−RCFS(ωFFC)vFIF −RCF S(ωFFC) + S(ω
F
IF ) δ.(49)

Combining the angular velocities represented by the
second term in the first row of (49) and the first term
in the last row of (49) yields

−RCF S(ωFIF ) + S(ω
F
FC) v

F
IF

= −RCFS ωFIF + ωFFC vFIF

= −RCFS(ωFIC)vFIF . (50)

The right-hand side of (50) can be further clarified using
ωFIC = R

F
Cω

C
IC(t) and

S(ωFIC) = S(RFCω
C
IC)

= RFCS(ω
C
IC)R

C
F . (51)

to yield

−RCF S(ωFIF ) + S(ω
F
FC) v

F
IF

= −RCFRFCS(ωCIC)RCF vFIF
= −S(ωCIC)RCF vFIF . (52)

Combining the angular velocity terms ωFFC(t) and ω
F
IF (t)

in the last terms of the last row in (49) with ωFIC(t) yields

−RCF S(ωFFC) + S(ω
F
IF ) δ = −RCFS ωFIF + ωFFC δ

= −RCFS(ωFIC)δ
= −RCFS(RFCωCIC)δ
= −RCFRFCS(ωCIC)RCF δ
= −S(ωCIC)RCF δ. (53)

Multiplying both sides of (37) by S(ωCIC) yields

−S(ωCIC)rp = −S(ωCIC) kpep +RCF vFIF +RCF δ . (54)

Substituting (52), (53), and (54) into (49) yields

ṙp = 1
mR

C
FN1(v

F
IF )− S(ωCIC)rp + gRCI E3 + 1

mR
C
FF

F
f

+kpR
C
F v

F
IF − kpvCICd −RCFS(δ)ωFIF . (55)

By taking the time derivative of r(t) in (36) and
substitute (47) and (55) it can be obtained that

ṙ =
ṙp
ė
θ

=
−S(ωCIC)rp
O3x1

+
1
mR

C
FF

F
f −RCFS(δ)ωFIF

−LωRCFωFIC − LωRCF Jcθ̇c
+

1
mR

C
FN1(v

F
IF ) + kpR

C
F v

F
IF + gR

C
I E3

O3x1

− kpv
C
ICd

Lωω
C
ICd

.

(56)
Arranging the last term in the first row of (56) yields

1
mR

C
FF

F
f −RCFS(δ)ωFIF

−LωRCFωFIC − LωRCF Jcθ̇c

=
RCF O3x3
O3x3 −LωRCF

1
mB1,−S(δ), O3x2
O3x1, I3x3, Jc

⎡⎣ u1
ωFIF
θ̇c

⎤⎦
= L̄ωBŪ

(57)
where L̄ω ∈ R6x6 is defined as

L̄ω =
RCF O3x3
O3x3 −LωRCF , (58)

B(t) ∈ R6x6 is defined as
B =

1
mB1 −S(δ) O3x2
O3x1 I3x3 Jc

(59)

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 +δ3 −δ2 0 0
0 −δ3 0 +δ1 0 0
1
m +δ2 −δ1 0 0 0
0 1 0 0 0 cos θt
0 0 1 0 1 0
0 0 0 1 0 − sin θt

⎤⎥⎥⎥⎥⎥⎥⎦ ,(60)
and Ū(t) ∈ R6 is given by

Ū =

⎡⎣ u1
ωFIF
θ̇c

⎤⎦ . (61)

It should be noted that the final form of B(t) in (59)
represents the point where the specifics of the Tilt-
Roll Jacobian, Jc(t), are explicitly used, the Pan-Tilt
configuration will require a different B(t). The new term
B̄(t) is introduced as

B̄ = L̄ωB (62)

along with the new term U(t) = U1 U2 ∈ R6,
where U1(t) ∈ R3 and U2(t) ∈ R3, defined also further
clarify the control design procedure.

U = B̄Ū . (63)

Substitution of (62) and (63) into (57) and then substi-
tution of the resulting form of (57) into (56) produces
the open-loop filtered error dynamics as follows

ṙ =
−S(ωCIC)rp
O3x1

+
U1
U2

− kpv
C
ICd

Lωω
C
ICd

(64)

+
1
mR

C
FN1(v

F
IF ) + kpR

C
F v

F
IF + gR

C
I E3

O3x1



where RCFR
F
I = I3 is used and it is clear that the

control inputs U1(t) and U2(t) will be designed to meet
the control objective. Note that implementation of the
control while require Ū(t) which is obtained from

Ū = B̄−1U ∈ R6 (65)

requires B̄−1 = B−1(L̄ω)−1 where

(L̄ω)
−1 =

1

∆(L̄ω)

−LωRCF O3x3
O3x3 RCF

(66)

in which ∆(L̄ω) = −RCFLωRCF is the determinant of the
matrix L̄ω(t) and ∆(L̄ω) = O6x6 due to Assumption A3.

B. Control Design

The non-negative scalar function V (t) is chosen as

V =
1

2
r r +

1

2
epep. (67)

Differentiating yields

V̇ = r ṙ + ep ėp, (68)

by substituting (35) and (64) into (68) it can be obtained
that

V̇ = [rp , eθ ]
−S(ωCIC)rp
O3x1

+
U1
U2

+

1
mR

C
FN1(v

F
IF ) + kpR

C
F v

F
IF + gR

C
I E3 − kpvCICd

Lωω
C
ICd

+ep −S(ωCIC)ep + rp − kpep −RCF δ − vCICd
(69)

where (37) was utilized. The terms in (69) can be
collected to yield

V̇ = [−rpS(ωCIC)rp + 1
mrpR

C
FN1(v

F
IF ) + rpkpR

C
F v

F
IF

+rpU1 + rpgR
C
I E3 − rpkpvCICd + eprp − epS(ωCIC)ep

−kpepep − epRCF δ − epvCICd; eθU2 − eθLωωCICd].
(70)

Equation (70) will be utilized to design the control
inputs U1(t) and U2(t). From the upper equation in (70)
we can design U1(t) to subtract out four terms, add
stabilizing feedback, and add robust compensatation for
the unknown nonlinear term as follows

U1 = −krrp− rpζ
2
1( vFIF )
ε0

+kpR
C
F v

F
IF−gRCI E3−ep (71)

where ε0 is a positve constant, Assumption 5 is used for
ζ1 vFIF , and the nonlinear term N̄1(t) is defined by

N̄1 =
1
mR

C
FN1(v

F
IF ). (72)

From the lower equation in (64) U2(t) can be designed
as

U2 = Lωω
C
ICd − kθeθ. (73)

Next, substituting these designed control inputs (71) and
(73) into (64), we can get the closed-loop filterd error
design based on Lyapunov stability analysis as follows

ṙ = [−S(ωCIC)rp−krrp−
rpζ

2
1( vFIF )
ε1

+N̄1−kpvCICd; −kθeθ].
(74)

Substituting (71) and (73) into (70) yields

V̇ = rp(N̄1 −
rpζ

2
1( vFIF )
ε0

)− krrprp − rpkpvCICd − kθeθ eθ
−rpS(ωCIC)rp − epS(ωCIC)ep − kpepep − ep(RCF δ + vCICd).

(75)

IV. Stability Analysis

Theorem 1: The closed-loop control law of (71) and
(73) ensure that the tracking error is Globally Uniformly
Ultimately Bounded (GUUB) in the manner

η ≤ η(0) 2 e−2λ2t + ε4
2λ2

(76)

where
η [rTp , e

T
θ , e

T
p ]
T , (77)

ε4 is a positive constant, and λ2 is a positive constant
given by the following form

λ2 = min{(kr − λ1
2 ), kp − λ0

2 , kθ} (78)

where λ0, λ1 are positive constants under the conditions
that

kr >
λ1
2 and kp> λ0

2 . (79)

A proof of the theorem is given in Appendix A.

V. Simulation

A two computer system was built to simulate the pro-
posed controller as shown in Figure 5. The first computer
is configured to run QNX Real-Time Operating System
(RTOS) and host the QMotor [11] control and simulation
package while the second computer is configured to run
Windows XP and host the FlightGear (v0.9.10) [3] open-
source flight simulator package. A QMotor program was
written to simulate the rigid body kinematics dynamics
and the feedback control. The output of the dynamics
simulation is sent via UDP to set the aircraft/camera
position and orientation in the FlightGear virtual world
(note that FlightGear is used only as a graphics proces-
sor). The desired trajectories are input by the opera-
tor using a 6DOF joystick (Logitech Extreme 3D Pro
[6]). Specifically, the operator indirectly supplies the
desired position trajectory used by the controller through
monitoring the simulated camera view and using the
joystick to command the velocities that move the camera
view in the virtual world. The three inputs on the
joystick, labeled as x, y, and twist, are used to generate
and control either three translational velocities, vCICd (t),
or the three angular velocities, ωCICd (t) depending on
trigger position. That is, the magnitude and direction
of these quantities is derived from the joystick position.
The velocity commands are then integrated to produce
the desired position trajectory used by the controller. A
typical scene from FlightGear is shown in Figure 6 where
the quadrotor is tilted but the camera view seen by the
operator remains level.
The quadrotor simulation was developed to approx-

imate the parameters of the DraganFlyer X-Pro [2].
Parameters such as mass (m) and saturation limits for
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Fig. 5. Overview of components in simulation system.
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Fig. 6. The “fly-the-camera” view used by the operator and an
outside view of the quadrotor position.

control inputs are found in [10]. The control gains are
chosen to be

kr = kθ = diag(1, 1, 1), kp = diag(1, 1, 5),

m = 2.72[kg] and g = 9.81[m3/kgs2],

u1 max = 35.586 [Nm],

θtilt max = θroll max = 4.067 [Nm] (80)

In order to orient the simulated quadrotor and camera
systems with the virtual world, a desired rotation matrix
between the camera frame (C) and Flight Gear frame
(G) was defined as

RCCd=G =

⎡⎣ 0 0 −1
0 1 0
1 0 0

⎤⎦ . (81)

A short timespan of the simulation was captured to
demonstrate the operation of the system. The simulation
results shown in Figure 15 and Figure 16 and displayed
in Figure 1 demonstrate that the camera and quadrotor
move in opposite directions to acheive the fly-the-camera
perspective. Figure 7 shows the position errors about
the coordinates (x, y, z) and Figure 8 shows the position
tracking of the quad-rotor to the desired trajectory pd(t)
in (30). The actual quad-rotor trajectory represented by
the blue line follows the desired trajectory represented
by the red line which is commanded to go up at the
first time and then, move to forward and again go

forward near the end to the pd(t). Figure 9 shows the
filtered tracking errors in (37). Figure 10 shows the
control inputs. The translational force input u1(t) of the
quadrotor is collectively steady after having transient
states in order to track the desired trajectory. Torque
inputs are given to turn left, right, and to tilt. The
camera torque inputs in the two bottom figures are
shown for tilting and rolling. Figure 11 shows the velocity
tracking errors in (35) by the results of Figure 12. Figure
13 shows the angular velocity tracking. Figure 14 shows
the angle-axis signal of (38) in camera frame. Figure 15
shows the angles of the Tilt-Roll manipulator in (14) and
Figure 16 shows the Euler angles about roll, pitch, and
yaw of quadrotor quadrotor; ΘIIF (t) in (23).

VI. Conclusion

This paper suggests a novel fly-the-camera approach
to designing a nonlinear controller for an underactuated
quadrotor aerial vehicle that compliments the quadrotor
motion with two additional camera axes to produce
a fully actuated camera targeting platform. The fly-
the-camera approach should provide a more intuitive
perspective for a remote pilot to operate the quadrotor
vehicle and camera for surveillance and navigation tasks.
The approach fuses the often separate tasks of vehicle
navigation and camera targeting into a single task where
the pilot sees (and flies) the system as through riding
on the camera optical axis. The controller was shown
to provide position and angle tracking in the form of
Globally Uniform Ultimately Bounded (GUUB) result
using measurable position and velocity information as
state feedback. Simulation results were shown as initial
validation of the proposed system which are shown in
Appendix C.
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Appendix A
Proof of Theorem 1

An upper bound for V̇ (t) in (75) can be formed by
first noting that the skew symmetry of S(·) implies that
rpS(ω

C
IC)rp(t) = 0 and epS(ω

C
IC)ep(t) = 0, and then

specifying upper bounds as

ε1 ≥ −RCF δ − vCICd (82)

and
ε2 ≥ kpv

C
ICd (83)

where ε1 and ε2 are positive scalar constants. An upper
bound for V̇ (t) can now be written as

V̇ ≤ −kr rp
2 − kθ eθ

2 − kp ep
2
+ ep ε1

+ rp ε2 + rp ζ1(·) 1− rp
ζ1(·)
ε0

.(84)

Bounds on individual terms in (84), specifically,

ep ε1 ≤ 1
2

λ0 ep
2 + 1

λ0
ε21 (85)

where λ0 is a positive scalar constant,

rp ε2 ≤ 1
2

λ1 rv
2 + 1

λ1
ε22 (86)

where λ1 is a positive scalar constant, and

ε3 ≥ rp ζ1(·) 1− rp
ζ1(·)
ε0

(87)

can be used to write a new upper bound for V̇ (t) as

V̇ ≤ −(kr − λ1
2 ) rp

2 − kθ eθ
2

−(kp − λ0
2 ) ep

2 +
ε21
2λ0

+
ε22
2λ1

+ ε3. (88)

If a positive scalar constant λ2 is selected according to
(78), then we can obtain

V̇ ≤ −λ2 rp
2 + eθ

2 + ep
2 +

ε21
2λ0
+

ε22
2λ1
+ε3, (89)

and then the definition of η(t) in (77) is used to form a
final upper bound on V̇ (t) as

V̇ ≤ −λ2 η 2 +
ε21
2λ0

+
ε22
2λ1

+ ε3. (90)

The definition of V (t) in (67) can be substituted into
(90) to yield

V̇ ≤ −2λ2V + ε4 (91)

where ε4 is a new bounding constant introduced as
ε21
2λ0

+
ε22
2λ1

+ ε3 ≤ ε4. (92)

The solution to this differential inequality is

V = V (0)e−2λ2t + ε4
2λ2

(93)

and the initial value of V (0) is upper bounded as

V (0) ≤ 1
2 η(0) 2 . (94)

Hence, V (t) can be written as

V (t) ≤ 1
2 η(0) 2 e−2λ2t + ε4

2λ2
. (95)

Relying again on the definition of V (t) in (67), a bound
on η(t) can be written as

η ≤ 2V (t), (96)

and then (93) substituted to yield

η ≤ η(0) 2 e−2λ2t + ε4
2λ2

(97)

which proves the result in Theorem 1.
Remark 2: According to Theorem 1 and its subse-

quent stability analysis V (η(t)) is bounded provided the
controller gains are selected to satisfy (79). Based on
the definition of in η(t) in (77) it is possible to conclude
that ep(t), eθ(t), and rp(t) are bounded. The desired
trajectories, pIICd(t), v

C
ICd(t), and ωCICd(t) are bounded

by design. It was also assumed that the quadrotor pitch
angle, θ(t) = ±π

2 , so that T IF (Θ) is invertible and
bounded from (23) and RIF (Θ) is bounded and full rank
according to Assumption 3. The rotation matrix RFC(θc)
is of full rank and bounded as shown in (10), and also
JC(t) and JC(t) are full rank from (13) and (15). The
product of RIF (Θ) and R

F
C(θc), R

I
C(Θ, θc), is bounded

and full rank. Thus, pIIC(t) in (30), ṗ
I
ICd(t) in (21),

G(RIF ) in (5), and v
F
IF (t) in (37) are bounded. Then

vCIC(t) in (20), ṗ
I
IC(t) in (19), and ṗ

I
IF (t) in (1) are

bounded. Owing to the desired trajectory ωIICd(t) ∈ L∞,
Θ̇IICd is bounded from (27). Since eθ(t) is bounded,
µ(t) ∈ L∞ under Assumption 3 resulting in Lω(t) ∈ L∞
in (44). Since vFIF (t) ∈ L∞, the nonlinearity of the
aerodynamic damping term, N1(vFIF ) in (4) is upper
bounded by ζ1( v

F
IF ) by Assumption 5. Hence, U1(t) ∈

L∞ from (71), U2(t) is bounded from (73). Since Lω(t)
and RCF (θc) ∈ L∞, L̄ω(t) and L̄−1ω (t) are bounded from
(58) and (66), respectively. Owing to the fact that B(t)
is invertible and bounded from (59) and B̄(t) from (66),
and then Ū(t) in (61) is bounded. This yields that u(t),
ωFIF (t), and θ̇c(t) are all bounded. Θ̇

I
IC(t) in (26), Θ̇

I
IF (t)

in (2), and ṘIF (Θ) in (3) are all bounded, resulting that
the camera velocity ωCIC(t) in (24), ω

F
BC(t) in (25), and

ωCCCd(t) in (46) are all bounded. Hence, we can make a
conclusion that the time derivatives of errors, ėθ(t), ėp(t),
ṙp(t), and ṙ(t) in (43), (35), (55), and (64), respectively,
are all bounded. Finally v̇FIF (t) in the modeling equaion
in (4) is bounded. Therefore we can conclude that all
the signals remain bounded in the suggested closed-loop
system.



Appendix B
Kinematics of the 3-Link Camera Positioner

The Denavit-Hartenburg values in Table I, II can be
used in conjunction with the formula for the rotation
matrix from the ith to (i − 1)th frame expressed in the
coordinate system i − 1, that is, Ri−1i (Θ), according to
[12]

Ri−1i =

⎡⎣ cos θa − sin θa cosαt sin θa sinαt
sin θa cos θa cosαt − cos θa sinαt
0 sinαt cosαt

⎤⎦ .
(98)

Case1:Tilt-Roll Camera Configuration
(camera looking forward)

All of the rotation matrices of the Tilt-Roll camera
positioning unit shown in Figure 3 are obtained using
Table I and are given by

RB=O0
1 =

⎡⎣ cos θt 0 − sin θt
sin θt 0 cos θt
0 −1 0

⎤⎦
(Tilt)

, (99)

R12 =

⎡⎣ sin θp 0 cos θp
− cos θp 0 sin θp
0 −1 0

⎤⎦
(Pan)

,(100)

and R23=C =

⎡⎣ sin θr cos θr 0
− cos θr sin θr 0
0 0 1

⎤⎦
(Roll)

. (101)

Tilt-Roll Camera Configuration is achieved by locking
the pan angle at θp(t) = 0. The rotation matrices RF1 (Θ)
and RF2 (Θ) are defined here for computing (10) and (15).
The rotation matrix from the first link frame, O1, to the
quadrotor frame, F , is obtained using

RF1 = RFBR
B=O0
1

=

⎡⎣ 1 0 0
0 0 1
0 −1 0

⎤⎦⎡⎣ cos θt 0 − sin θt
sin θt 0 cos θt
0 −1 0

⎤⎦
=

⎡⎣ cos θt 0 − sin θt
0 −1 0

− sin θt 0 − cos θt

⎤⎦ (102)

where the third column in (102) is the vector z1 (t) in the
Jacobian matrix JC(t). Next, the rotation matrix from
the second link frame, O2, to the quadrotor frame, F , is
obtained using

RF2 = RF1 R
1
2

=

⎡⎣ cos θt 0 − sin θt
0 −1 0

− sin θt 0 − cos θt

⎤⎦⎡⎣ 0 0 1
−1 0 0
0 −1 0

⎤⎦
=

⎡⎣ 0 sin θt cos θt
1 0 0
0 cos θt − sin θt

⎤⎦ (103)

where the third column in (103) is the vector z2 (t) in
the Jacobian matrix JC(t).

Case2:Pan-Tilt Camera Configuration
(camera looking downward)

The Denavit-Hartenburg values in Table II are used
to obtain the rotation matrices of the Pan-Tilt camera
positioner configuration.

Link d (offset) a (length) αt (twist) θa (angle)
1 0 0 −90◦ θt − 90◦
2 0 0 −90◦ θp − 90◦
3 0 0 0◦ θr − 90◦

TABLE II

Denavit-Hartenburg Table for a Pan-Tilt Camera Positioner

The rotation matrices of the Pan-Tilt camera position-
ing configuration shown in Figure 3 are given by

RB=O0
1 =

⎡⎣ sin θt 0 cos θt
− cos θt 0 sin θt
0 −1 0

⎤⎦
(Tilt)

,(104)

R12 =

⎡⎣ sin θp 0 cos θp
− cos θp 0 sin θp
0 −1 0

⎤⎦
(Pan)

,(105)

and R23=C =

⎡⎣ sin θr cos θr 0
− cos θr sin θr 0
0 0 1

⎤⎦
(Roll)

. (106)

Pan-Tilt camera configuration is achieved by locking the
roll angle at θr(t) = 0◦ in (106), then we have

R23 =

⎡⎣ 0 1 0
−1 0 0
0 0 1

⎤⎦
(θr=0◦)

. (107)

The rotation matrix RFB(Θ) has same matrix in (8). The
rotation matrix from the quadrotor frame (F ) to first
link frame O1 is obtained by multiplying the

RF1 = RFBR
B=O0
1

=

⎡⎣ 1 0 0
0 0 1
0 −1 0

⎤⎦⎡⎣ sin θt 0 cos θt
− cos θt 0 sin θt
0 −1 0

⎤⎦
=

⎡⎣ sin θt 0 cos θt
0 −1 0

cos θt 0 − sin θt

⎤⎦ (108)

where the third column in (108) is the second vector
in the Jacobian matrix JC(t). Next, the rotation matrix
from the quadrotor frame through the second link yields

RF2 = R
F
1 R

1
2

=

⎡⎣ sin θt 0 cos θt
0 −1 0

cos θt 0 − sin θt

⎤⎦⎡⎣ sin θp 0 cos θp
− cos θp 0 sin θp
0 −1 0

⎤⎦
=

⎡⎣ sin θt sin θp − cos θt sin θt cos θp
cos θp 0 − sin θp

cos θt sin θp sin θt cos θt cos θp

⎤⎦
(109)

where the third column is the third vector in the Jacobian
matrix for Pan-Tilt manipulator. Then, we can obtain



the total rotation matrix by combining all those matrices
from quadrotor through the 3rd link to yield

RFC =

⎡⎣ cos θt sin θt sin θp sin θt cos θp
0 cos θp − sin θp

− sin θt cos θt sin θp cos θt cos θp

⎤⎦ . (110)
The Jacobian matrix of the Pan-Tilt camera manipula-
tor, JC(Θ) ∈ R3×3, can be represented

JC =

⎡⎣ 0 cos θt sin θt cos θp
1 0 − sin θp
0 − sin θt cos θt cos θp

⎤⎦ , (111)

θC =

⎡⎣ θt
θp
θr

⎤⎦ where θr(t) = 0◦. (112)

To simplify the use of the Jacobian matrix, it can be
noted that θ̇r(t) = 0◦ and hence a new reduced position
joint angle vector can be introduced as

θ̇C =
θ̇t
θ̇p

∈ R2 and θC =
θt
θp

∈ R2 (113)

along with a reduced Jacobian matrix, JC(Θ) ∈ R3×2,
defined as

JC =

⎡⎣ 0 cos θt
1 0
0 − sin θt

⎤⎦ . (114)

Appendix C
Simulation Results

Simulation results are obtained as
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Fig. 7. position tracking errors

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

[m
]

Position Tracking about x in Inertial Frame

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

[m
]

Position Tracking about y in Inertial Frame

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

time [sec]

[m
]

Position Tracking about z in Inertial Frame

desired

actual

Fig. 8. position tracking

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
Filtered Tracking x Error

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1
Filtered Tracking y Error

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

time[sec]

Filtered Tracking z Error

Fig. 9. filtered tracking errors



0 10 20 30 40 50 60 70 80 90 100
−27

−26.5

−26

[N
m

]

Translational Force Input u1 about lifting

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

[N
m

]

Rotational Torque Input U2 about Roll

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

[N
m

]

Rotational Torque Input U2 about Pitch

0 10 20 30 40 50 60 70 80 90 100
−0.1

0
0.1

time [sec]

[N
m

]

Rotational Torque Input U2 about Yaw

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

[N
m

]

Camera Torque about Tilt

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

time [sec]

[N
m

]

Camera Torque about Roll

Fig. 10. Control Inputs

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

[m
/s

2
]

Velocity x−axis Error in Body−fixed Frame

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

[m
/s

2
]

Velocity y−axis Error in Body−fixed Frame

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

time[sec]

[m
/s

2
]

Velocity z−axis Error in Body−fixed Frame

Fig. 11. velocity tracking errors

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

[m
/s

2
]

Velocity Tracking about x in Body−fixed Frame

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

[m
/s

2
]

Velocity Tracking about y in Body−fixed Frame

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

time [sec]

[m
/s

2
]

Velocity Tracking about z in Body−fixed Frame

desired

actual

Fig. 12. velocity tracking

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

[r
a

d
/s

2
]

Angular Velocity Tracking about x in Body−fixed Frame

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

[r
a

d
/s

2
]

Angular Velocity Tracking about y in Body−fixed Frame

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

time [sec]

[r
a

d
/s

2
]

Angular Velocity Tracking about z in Body−fixed Frame

desired

actual

Fig. 13. angular velocity tracking
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